domingo, 17 de febrero de 2013

LA VIDA DE LAS ESTRELLAS


LA VIDA DE UNA ESTRELLA
Las estrellas tienen una fuente interna de energía. Pero, al igual que todo tipo de combustible, sus reservas son limitadas. A medida que consumen su suministro de energía las estrellas van cambiando y cuando se les acaba, mueren. El tiempo de vida de las estrellas, aunque muy largo comparado con las escalas de tiempo humanas, es, por lo tanto, finito.
A medida que envejecen sufren profundos cambios en sus tamaños, colores y luminosidades, siempre como consecuencia de la disminución de sus reservas. Para aumentar su expectativa de vida, la estrella lucha continuamente contra la fuerza gravitatoria que intenta contraerla. Las distintas etapas evolutivas son sucesiones de contracciones que terminan cuando la estrella comienza a quemar otros combustibles que mantenía en reserva y logra establecer una nueva situación de equilibrio.
El factor más importante en el desarrollo de una estrella es su masa inicial. Las estrellas más masivas tienen mayores temperaturas centrales y, en consecuencia, producen energía y consumen combustible a un ritmo creciente. Este hecho fue determinado observacionalmente y se llama relación masa-luminosidad. Podría parecer que las estrellas más masivas, las que tienen más combustible, deberían tener vidas más largas. Pero en realidad sucede exactamente lo contrario. Al igual que con el dinero o la comida, la duración del combustible estelar depende tanto de la cantidad disponible como del ritmo de consumo. Por ejemplo, la vida del Sol será de 10 mil millones de años. Una estrella de masa 10 veces mayor tiene 10 veces más combustible, pero lo quema a un ritmo tan grande (de acuerdo a la relación masa-luminosidad) que termina de consumirlo en 30 millones de años. En el otro extremo, una estrella de 0,1 M0 brillará durante 3 billones de años antes de morir.
¿Cómo se mide la masa, esa propiedad fundamental que determina completamente la estructura y evolución de una estrella?
El único método de determinación directa de masas es el estudio del movimiento de estrellas binarias. Las estrellas dobles o binarias están muy próximas entre sí y cada estrella gira alrededor del centro de gravedad del par. Aplicando a estos sistemas las leyes de Newton es posible deducir su masa. Sin embargo, la masa de cada estrella del sistema se puede determinar sólo en el caso de que el sistema binario sea ecipsante (es decir cuando una de las estrellas eclipsa a la otra). Estas mediciones, aunque pocas en número, son interesantes porque a partir de ellas se han podido establecer algunos resultados que dieron la clave para comprender la evolución estelar.
Una manera indirecta de determinar la masa estelar es usando la relación masa-luminosidad que pudo ser establecida cuando se desarrolló una de

Se han observado estrellas muy masivas, hasta 120 M0, pero ¿hay una masa mínima para las estrellas? La respuesta a esta pregunta está todavía en estudio. Las estrellas de menor masa observadas son Ross 614B, de 0,08 M0 y Luyten 726-8B con 0,04 M0, pero la mayoría de las estrellas tienen masas de entre 0,3 y3 M0.
 las herramientas más poderosas con que cuentan los astrofísicos, el diagrama R-R que consideraremos a continuación.
En el año 1911 el astrónomo danés E. Hertzsprung comparó la magnitud absoluta y la luminosidad de estrellas pertenecientes a varios cúmulos. Trazó la curva de variación de uno de estos parámetros en función del otro y observó que los puntos no estaban esparcidos al azar en el diagrama, sino que se distribuían a lo largo de una línea bien definida. En 1913, el astrónomo norteamericano H. Russell llegó a la misma conclusión con datos de otras estrellas. Mostró empíricamente la existencia de una relación entre la luminosidad y temperatura estelares. El diagranta resultante se llama diagrama Hertzprung-Russell (H-R), y está representado en la figura.
La posición de unaa estrella en el diagrama H-R depende de su estado de evolución, y por eso la estructura y la historia de nuestra galaxia se pueden estudiar con este instrumento básico. Así como los botánicos pueden estimar la edad de un árbol a partir de la cantidad de anillos de su tronco, los astrónomos encuentran en el H-R la herramienta que les permite estimar la edad de una estrella.
El diagrama Herzprung-Russell. Cada estrella se representa según su magnitud absoluta, que mide su brillo intrínseco, y su tipo espectral, que refleja su color y su temperatura. Esta última aumenta hacia la izquierda
Un examen en el diagrama H-R de las estrellas con distancias conocidas muestra que no están distribuidas al azar, sino que muchas (entre ellas el Sol) están agrupadas en una banda angosta sobre la diagonal, llamada secuencia principal. Otro grupo de estrellas, la rama de las gigantes, se extiende horizontalmente sobre la secuencia principal. Las estrellas con luminosidades mayores que las gigantes se llaman supergigantes, mientras las estrellas sobre la secuencia principal se llaman enanas.
Estudiando los sistemas binarios se pudo establecer que la luminosidad de una estrella de secuencia principal es proporcional a su masa elevada a la potencia 3,5. Es decir que una estrella 2 veces más masiva que el Sol será 11 veces más 1 luminosa. Esta relación masa-luminosidad es una forma de estimar la masa de una estrella que no pertenece a un sistema binario a partir de su luminosidad, con la condición de que pertenezca a la secuencia principal, lo que se puede determinar, como veremos, con criterios espectroscópicos.
Las cantidades fundamentales que definen este diagrama se pueden medir con distintos parámetros, dándole así distintas formas. El H-R clásico usa dos cantidades: el tipo espectral (que es una determinación cualitativa de la temperatura) y la magnitud absoluta.
El tipo espectral
La única fuente de información sobre la naturaleza de las atmósferas estelares es el análisis de su espectro, del que se pueden hacer dos tipos de aproximaciones: cuantitativas y cualitativas.
Como hemos visto en el capítulo anterior, el análisis cuantitativo pernúte determinar los parámetros físicos que describen la atmósfera estelar. El análisis cualitativo descansa en la simple observación de que los espectros pueden agruparse en familias: esta clasificación espectral considera sólo la apariencia del espectro en el visible. Según ella, las estrellas se ordenan en 7 clases principales (de acuerdo a su temperatura) a las que se designa con las letras O, B, A, F, G, K y M. Para tener en cuenta las diferencias de apariencia entre espectros de la misma clase fue necesario establecer una subdivisión decimal, y entonces el tipo espectral se representa por BO, B1, B2, ..., B9, AO, A1...
La clasificación espectral se basa en la presencia o ausencia de líneas de ciertos elementos, lo que no refleja una composición química diferente de las atmósferas sino sólo las diferencias de temperatura atmosférica.
Así el H, que es el elemento más abundante del universo y del que todas las estrellas tienen casi la misma abundancia, predomina en las líneas espectrales de estrellas con temperaturas cercanas a lO.0000K, porque la excitación del átomo de H es máxima a esta temperatura. En las atmósferas de las estrellas más calientes, de tipo espectral o, el H está casi todo ionizado y entonces no produce un espectro significativo de líneas de absorción.
En las atmósferas de estrellas frías (por ejemplo de tipo espectral K) los átomos de H son neutros (no ionizados) y prácticamente todos están en el estado fundamental, no excitado. El espectro de líneas así producido pertenece principalmente al rango ultravioleta, no observable desde la Tierra, mientras que las líneas de H observadas en el visible son muy débiles.
Las estrellas de tipo o que son las más calientes, muestran en sus espectros líneas de He ionizado, pero no líneas de H. Yendo a tipo BO hasta AO la intensidad de las líneas de He también decrece cuando las condiciones de temperatura no son favorables y la de los metales (elementos más pesados que el He) crece para tipos espectrales correspondientes a temperaturas más bajas. En las estrellas más frías, las líneas de metales neutros se hacen más y más intensas y aparecen bandas características de moléculas.
Las clasificación en “gigantes” y “enanas”, tiene sentido sólo para un dado tipo espectral. Si se consideran dos estrellas del mismo tipo espectral, una de la secuencia principal y la otra de la rama de las gigantes, las dos muestran gran diferencia en luminosidad. Como son del mismo tipo espectral, tienen la misma temperatura. La diferencia de luminosidad se origina entonces en la diferencia de tamaño. Comparemos, por ejemplo, dos estrellas de clase M. La luminosidad de la gigante es 10.000 veces mayor que la de la enana (o de secuencia principal). Por lo tanto su área superficial debe ser 10.000 veces mayor y entonces el radio de la gigante será 100 veces mayor que el de la enana. (La ley de Stefan-Boltzmann dice que:  L es proporcional a R2.T4).
Las estrellas que aparecen por debajo de la secuencia principal son las enanas blancas, cuyos radios son muy pequeños.
NACE UNA ESTRELLA
Como ya hemos dicho la vida estelar es una sucesión de contracciones. La primera gran contracción es la de la nube interestelar que crea la estrella. La cuna de las nuevas generaciones de estrellas en nuestra galaxia parece estar en las nubes interestelares de átomos y moléculas. La densidad promedio del medio interestelar en la galaxia es de cerca de un átomo por cm3. La formación de una estrella requiere una densidad 1024 veces mayor. El único mecanismo capaz de actuar a grandes distancias y de originar tal factor de compresión es la fuerza de la gravedad, que juega aquí un papel esencial. Por otro lado el movimiento térmico de las moléculas y el movimiento turbulento del gas interestelar producen una presión que impide una contracción abrupta impuesta por el campo gravitatorio.
Cuando la gravedad rompe este equilibrio se puede formar una estrella o un grupo de estrellas. En términos muy generales, esto sucede cuando la masa de la nube sobrepasa una cierta masa crítica. Una nube colapsará si, por ejemplo, su masa aumenta por colisiones con nubes más pequeñas, pero su temperatura promedio sólo aumenta ligeramente, o si la masa de una nube permanece constante, pero su temperatura disminuye, de manera que la presión no puede frenar el colapso. Estas dos situaciones podrían ocurrir simultáneamente. Los cálculos indican que en nubes con masas mayores que unas 2.000 M0 la gravedad gana sobre las fuerzas de presión. La nube se hace gravitatoriamente inestable y se contrae más y más rápido. Como la masa de una estrella típica es unas 1.000 veces menor, hay que concluir que la nube se fragmenta.
Los complejos moleculares gigantes muy fríos, con temperaturas de unos 10 a 90 0K, son los lugares reconocidos de formación estelar. Sus masas son muy grandes; alcanzan hasta 1.000.000 M0. El polvo de la nube oculta las nuevas estrellas al astrónomo óptico, pero éstas se pueden detectar en el infrarrojo.
Hay un tipo de nubes moleculares pequeñas, llamadas “glóbulos de Bok”, algunos de los cuales se han observado en contracción gravitatoria. Su velocidad de colapso es de aproximadamente medio km/seg, y su radio es del orden de 2 años luz. Si nada frena su colapso, estos glóbulos se condensaran en estrellas dentro de 1.000.000 años, lo cual, en términos de la vida total de la estrella, es un período muy breve.
Estos objetos aislados (que se ven como zonas negras contra el fondo de la Vía Láctea) ilustran los modelos teóricos de formación estelar. La región central, altamente comprimida y mucho más densa que la periferia, atrae a la materia que la rodea. La temperatura aumenta progresivamente y la presión se hace suficientemente alta como para parar momentáneamente el colapso del núcleo. Poco a poco toda la materia en la envoltura cae hacia la protoestrella. Cuando su temperatura pasa los 10 millones de 0K, comienzan las reacciones termonucleares, es decir el autoabastecimiento de energía. En este momento la estrella entra en la secuencia principal y comienza su vida normal. En las galaxias espirales, como la nuestra, las estrellas se forman en los brazos espirales, donde se encuentran el polvo y el gas interestelares.
La observación de estrellas en formación o estrellas muy jóvenes junto con su ambiente provee importantes contribuciones a la teoría de formación estelar. En el esquema presentado la formación de estrellas está directamente relacionada a la evolución de las nubes moleculares, pero aunque es el caso más estudiado, no es el único. Una forma de aprender más sobre formación estelar es investigar galaxias vecinas.
La formación estelar en la Gran Nube de Magallanes presenta algunos problemas para este esquema: en una región llamada 30 Dorado se observan unas 50 estrellas O y B asociadas con una nube de 50 millones de M0 de hidrógeno neutro. No hay polvo en esta región ni se ha detectado ninguna nube molecular. Esto muestra claramente que la teoría de formación estelar basada en nubes moleculares no explica todos los nacimientos estelares. Este es un tema de gran actualidad en astrofísica que todavía no está resuelto.
La protoestrella entra al diagrama H-R por la derecha (la parte roja o fría), en el momento en que la temperatura central se hace suficientemente alta (recordemos que bajo compresión la temperatura de un gas aumenta) y la estrella comienza a convertir H en He. La posición inicial de la estrella en el H-R define la llamada secuencia principal de edad cero (ZAMs). Cuanto más masiva nace una estrella más arriba comienza su vida de secuencia principal y más luminosa es.
La posición de la ZAMS sobre el diagrama H-R depende de las composiciones químicas de las estrellas que se forman. La abundancia de metales (elementos más pesados que el He) aumenta de generación a generación, a medida que las estrellas más viejas evolucionan y enriquecen el medio interestelar con elementos pesados. En consecuencia la ZAMS se desplaza cada vez más hacia la derecha sobre el H-R a medida que la galaxia envejece, y este corrimiento permite estimar la edad de la galaxia.
La secuencia principal representa la primera pausa y la más larga en la inexorable contracción de la estrella. Durante este intervalo las estrellas son hornos nucleares estables y a esta estabilidad debemos nuestras propias vidas, ya que el Sol se encuentra en esta etapa. A medida que la estrella envejece se hace un poco más brillante, se expande y se calienta. Se mueve lentamente hacia arriba y a la izquierda de su posición inicial ZAMS.

No hay comentarios:

Publicar un comentario